Corporate Aviation Solutions

Flight Operations Manual
INTRODUCTION

Corporate Aviation Solutions operates corporate air effectiveness of its executives and managers, and to services.

This Flight Operations Manual is designed to provide operations of Corporate Aviation Solutions Flight D addressed by this manual, it is imperative that Corp Department personnel use prudent judgment when n integrity, efficiency, and excellence are not jeopardiz

Guidance found in Federal Aviation Regulations (FAR (AFM) take precedence over this manual. Conflicts AFM should immediately be brought to the attention

This Flight Operations Manual has been reviewed ar Management of Corporate Aviation Solutions.

____________________________ __________
REVISION STATUS

<table>
<thead>
<tr>
<th>CHANGE NUMBER</th>
<th>DATE</th>
<th>PAGES AFFECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>July 7, 2009</td>
<td>Entire Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

INTRODUCTION ...I

REVISION STATUS ..II

CHAPTER 1: SCOPE AND ORGANIZATION .. 1
 SCOPE ..1
 ORGANIZATION ...1

CHAPTER 2: DUTIES AND RESPONSIBILITIES ... 3
 DIRECTOR OF AVIATION ..3
 CHIEF PILOT ..3
 CAPTAIN ..4
 FIRST OFFICER ...4
 CHIEF OF MAINTENANCE ...4
 MAINTENANCE TECHNICIAN ..5
 DISPATCHER ...5
 SAFETY MANAGER ..6
 TRAINING MANAGER ...6
 PUBLICATIONS MANAGER ...7

CHAPTER 3: PERSONNEL ADMINISTRATION .. 9
 MINIMUM QUALIFICATIONS - FLIGHT CREW ..9
 MINIMUM QUALIFICATIONS - MAINTENANCE TECHNICIAN9
 PERSONNEL RECORD KEEPING REQUIREMENTS ..10

CHAPTER 4: PERSONNEL CONDUCT .. 11
 USE OF TOBACCO ..11
 CORRESPONDENCE ..11
 OUTSIDE EMPLOYMENT ..11
 CONFIDENTIALITY ..11
 CONSUMPTION OF ALCOHOL ..12
 FLIGHT CREW PHYSICAL CONDITION ..12

CHAPTER 5: FLIGHT AND DUTY TIME .. 13
 STANDARD DUTY PERIOD ..13
 EXTENDED DUTY PERIOD ...13
 FATIGUE RECOVERY / MULTIPLE TIME ZONES ...13
 DUTY PERIOD ...14
 DAY ROOMS ..14
 FATIGUE ..14

CHAPTER 6: STANDARD OPERATING PROCEDURES .. 15
 GENERAL OPERATING RULES ...15
 FLIGHT CREW CHECK-IN AND POST-FLIGHT PERIOD15
 FLIGHT PLANNING ...15
 REQUIRED PUBLICATIONS ..16
 WEATHER ..16
 SEVERE WEATHER AND WEATHER DETECTION DEVICES17
 APPROACH AND LANDING MINIMUMS ...17
 CIRCLING APPROACHES ...18
 BRAKING ACTION REQUIREMENTS ..18
 HIGH MINIMUMS CAPTAIN ...19
 SECOND-IN-COMMAND LIMITATIONS ..19

Developed by Corporate Aviation Solutions, LLC
Reproduction Not Authorized
Revision 0 July 7, 2009
Table of Contents

TAKEOFF MINIMUMS/ TAKEOFF ALTERNATES ... 20
ALTERNATE AIRPORT REQUIREMENTS .. 20
NOISE ABATEMENT .. 21
MINIMUM RUNWAY REQUIREMENTS ... 21
MINIMUM LANDING FUEL RESERVES ... 22
OPERATING TO/ FROM UNCONTROLLED AIRPORTS .. 22
AIRWORTHINESS DETERMINATION (PILOTS) .. 23
AIRCRAFT PRE-FLIGHT CHECK ... 23
USE OF MINIMUM EQUIPMENT LIST (MEL) ... 24
VOR CHECK ... 24
FROST, SNOW AND ICING .. 24
TOWING .. 24
AIRCRAFT REFUELING PROCEDURES .. 25
CABIN EMERGENCY EQUIPMENT ... 25
SURVIVAL EQUIPMENT REQUIREMENTS .. 25
BAGGAGE LOADING/ STORAGE ... 26
CABIN ANNOUNCEMENTS/ BRIEFS ... 26
PORTABLE ELECTRONIC DEVICES ... 27
STERILE COCKPIT .. 27
ADMISSION TO THE COCKPIT/ JUMP SEAT .. 27
OPERATION OF FLIGHT CONTROLS .. 27
PILOTS AT DUTY STATION DURING FLIGHT .. 28
CREWMEMBER USE OF SUPPLEMENTAL OXYGEN .. 28
STANDARDIZATION PROGRAM ... 28
PRE-DEPARTURE BRIEFING .. 29
USE OF CHECKLIST ... 29
STANDARD OPERATING PROCEDURES .. 29
BEFORE STARTING ENGINES CHECK .. 30
STARTING ENGINES CHECK .. 30
AFTER STARTING ENGINES CHECK .. 31
TAXI CHECK .. 31
TAKEOFF BRIEFING ... 32
BEFORE TAKEOFF CHECK .. 32
TAKEOFF PROCEDURES .. 33
TAKEOFF .. 33
TAKEOFF ROLL ... 33
AFTER TAKEOFF CHECK ... 34
ALTITUDE VERIFICATION PROCEDURE ... 34
ALTITUDE CALLOUT PROCEDURE ... 35
APPROACH AND LANDING BRIEFING ... 35
APPROACH CHECK .. 35
APPROACH PROCEDURES ... 36
MISSED APPROACH ... 37
DEVIATION CALLOUTS ... 38
STABILIZED APPROACH CRITERIA ... 39
VISUAL APPROACH ... 40
AFTER LANDING .. 40
POST-FLIGHT CHECK (PILOT) ... 40
FLIGHT CREW DEBRIEFS .. 40

CHAPTER 7: INTERNATIONAL PROCEDURES .. 41
REGULATORY COMPLIANCE .. 41
CREW QUALIFICATIONS AND TRAINING .. 41
REQUIRED DOCUMENTS ... 42
REQUIRED EQUIPMENT .. 42

Developed by Corporate Aviation Solutions, LLC
Reproduction Not Authorized
Table of Contents

PERMITS AND ENTRY REQUIREMENTS ... 42
INTERNATIONAL NAVIGATIONAL CHARTS .. 43
TRIP BRIEFING ... 43
NOTAM’S, TRACK MESSAGES AND FLIGHT PLANS .. 43
TIME KEEPING ... 43
NORTH ATLANTIC MNPS OPERATIONS .. 44
RVSM AIRSPACE .. 44
PRE-FLIGHT ACTIONS ... 44
FLIGHT PLAN LOADING PROCEDURES ... 45
INFLIGHT PROCEDURES .. 46
POST-FLIGHT PROCEDURES .. 48
CONTINGENCIES .. 49
REQUIRED REPORTS ... 52
BASIC AREA NAVIGATION (BRNAV) ... 53

CHAPTER 8: MAINTENANCE PROCEDURES .. 55
 DETERMINATION OF AIRWORTHINESS ... 55
 MAINTENANCE LOG REPORT (MLR) .. 55
 DEFERRED MAINTENANCE LOG (DML) ... 56
 MINIMUM EQUIPMENT LIST ... 56
 ENGINE CRUISE PARAMETERS .. 57
 MAINTENANCE AWAY FROM HOME BASE .. 57
 REFUELING PROCEDURES .. 57

CHAPTER 9: TRAINING ... 59
 PILOT TRAINING .. 59
 MAINTENANCE TECHNICIAN TRAINING .. 59
 GENERAL TRAINING ... 60

CHAPTER 10: HAZARDOUS MATERIALS .. 61

CHAPTER 11 SAFETY MANAGEMENT ... 63
 SAFETY POLICY ... 63
 NON-PUNITIVE SAFETY REPORTING POLICY ... 63
 ROLES AND RESPONSIBILITIES ... 64
 HAZARD IDENTIFICATION AND TRACKING .. 65
CHAPTER 1: SCOPE AND ORGANIZATION

SCOPE

This manual sets forth the standard operating procedures for the Corporate Aviation Solutions Aviation Department in accordance with the best judgment of management for the proper control of aviation assets.

- Compliance with Federal Aviation Regulations (FARs) and the limitations contained in the approved Airplane Flight Manual is mandatory, except when the Pilot in Command exercises his emergency authority granted by FAR 91.3.

- In the event that information contained in this manual conflicts with regulatory data, that regulatory data shall have precedence.

- The Pilot in Command of a flight retains final authority as to whether a flight can be dispatched or allowed to continue as scheduled. At the discretion of the PIC, the flight may be delayed, diverted, or canceled if any conditions exist which may compromise safety.

- This manual has been reviewed and approved by the Chief Executive Officer of Corporate Aviation Solutions.

All references contained in this Manual are intended to be non-gender specific. The terms “he” and “she”, or “his” and “her” may be considered interchangeable where used in this manual.

ORGANIZATION

The Aviation Department of Corporate Aviation Solutions is under the direction of the Corporate Financial Department. The Director of Aviation reports to the Executive Vice President & Chief Financial Officer concerning the department operations.
Chapter 1

Organizational Chart

CFO
Xxx xxxx

Director of Aviation
Xxx xxxx

Safety Manager/Captain
Xxx xxxx

Captain
Xxx xxxx

Captain
Xxx xxxx

Captain
Xxx xxxx

Dispatcher
Xxx xxxx

Chief Pilot
Xxx xxxx

Chief of Maintenance
Xxx xxxx

Maintenance Technician
Xxx xxxx

Maintenance Technician
Xxx xxxx

Captain
Xxx xxxx
CHAPTER 2

CHAPTER 2: DUTIES AND RESPONSIBILITIES

DIRECTOR OF AVIATION

The Director of Aviation is responsible for the operational control and management of all aviation assets owned or operated by the Corporate Aviation Solutions companies. He is directly responsible to the Executive Vice President & Chief Financial Officer, Corporate Aviation Solutions. His duties include:

- Establishing and implementing the air transportation needs of the Corporate Aviation Solutions companies.
- Maintaining a liaison with senior management personnel of Corporate Aviation Solutions companies.
- Preparation and administration of annual budgets.
- Reviewing operational needs and recommending any changes to meet those needs.
- Assuring timely and appropriate revisions to the Flight Operations Manual.
- Organizing regular department staff meetings.
- Performing all other administrative duties and responsibilities of a manager within the Corporate Aviation Solutions.

CHIEF PILOT

Accountabilities and Duties

The Chief Pilot is accountable for the professional standards of the flight crews under his/her authority and that operations and training safety management goals are met. The duties of the position include:

- Developing standard operating procedures;
- Developing and implementing all operator’s flight crews;
- Issuing directives and notices to the flight crews as required;
- Tracking all medical/certificate currency for crewmembers;
- Ensuring that all aerodromes and routes served by the operator are operationally suitable and meet company requirements;
- Taking action on and distributing accident, incident, and other occurrence reports;
- Processing and taking action on any flight crew reports;
- Supervising aircraft crews; and
- Assuming any responsibilities delegated by the VP Aviation Services.
CHAPTER 2

CAPTAIN

The Captain is the Pilot in Command (PIC) of the aircraft on flights assigned to him, and ensures the safety and security of the flight. He is directly responsible to the Director of Aviation for the operation of the aircraft. The PIC may delegate duties to other crewmembers, but retains responsibility for their accomplishment. His duties include, but are not limited to, the following:

- Assuring the airworthiness of aircraft before flight.
- Performing adequate preflight preparations in accordance with FAR policies and good operating practices.
- Overseeing additional crewmembers assigned to the flight.
- Performing all tasks associated with the operation of the aircraft while away from CORPORATE AVIATION SOLUTIONS' base of operations.
- Assuring all required passenger ground handling and transportation is in place, and providing flight crew contact phone numbers for daytime airport standby or overnight hotel accommodations.
- Verifying itinerary times for the next scheduled departure with the lead passenger.
- Completing relevant trip paperwork at the conclusion of the flight.
- Informing the Director of Aviation or Assistant Director of Aviation of any aircraft or operational difficulties.

FIRST OFFICER

The First Officer is Second in Command (SIC) of the aircraft for, and proper execution of the flight. He is directly responsible to the PIC for assigned flights. He will be prepared to assume the duties of the PIC if necessary.

CHIEF OF MAINTENANCE

The Chief of Maintenance is responsible for the maintenance and upkeep of all CORPORATE AVIATION SOLUTIONS aircraft and the equipment and facilities associated with their operation. He regularly updates the Director of Aviation on any relevant maintenance issues. His duties include, but are not limited to, the following:

- Overseeing all maintenance of corporate aircraft, whether accomplished in house or contracted to independent maintenance organizations.
CHAPTER 2

- Scheduling maintenance downtime flight schedule.
- Developing and implementing policies such maintenance is performed in compliance with industry standards.
- Monitoring maintenance practices to reduce the possibility of human error when maintenance is performed.
- Maintaining accurate and current records relating to the maintenance of company aircraft.
- Scheduling any required or recommended training for maintenance personnel, and ensuring that documentation of training completion is incorporated in individuals' training records.
- Overseeing the maintenance of hangar facilities and associated support equipment.
- Supervising all other Aviation Department maintenance personnel.
- Performing all other administrative duties and responsibilities of a manager within Corporate Aviation Solutions.

MAINTENANCE TECHNICIAN

The Maintenance Technician is responsible for completing all assigned aircraft, engine and avionics maintenance in a safe and timely manner. He reports directly to the Chief of Maintenance. His duties include, but are not limited to, the following:

- Assisting the Chief of Maintenance in overseeing maintenance conducted by contract facilities.
- Providing technical support for aircraft departures and arrivals.
- Assisting in office and shop maintenance, spares inventory and record keeping.
- Performing aircraft cleaning on a regular basis.

DISPATCHER

The Dispatcher is the administrative coordinator and scheduler and is the primary point of contact for the executive assistants for all matters pertaining to flights and for making other travel arrangements directly associated with the flights. This dispatcher reports directly to the Director of Aviation. The duties of the dispatcher include, but are not limited to the following:

- Prepare and print the flight schedules of all passengers, utilizing the computer scheduling program and other manual systems as required.
- Acts as liaison between customers and crewmembers in the exchange of pertinent information.
- Make arrangements for catering and ground transportation for passengers and crew.
CHAPTER 2

- Book hotels and make travel arrangements.
- Coordinate all charter flight schedules.
- Coordinate changes to schedules with operations and maintenance staffs.
- Review completed flight data and enter the data into the computer-based records program.
- Maintain accurate records of flight activity for reporting and budgeting purposes.
- Compile, produce and distribute reports as required.
- Ensure 24/7 coverage of all flight/charter operations.
- Relieve the Chief Pilot and Director of non-flying administrative activities.
- Process Accounts Payables for departmental expenditure invoices.
- Represents aviation/airport office on telephone communications.
- Order and accept delivery of supplies and materials.
- Maintain office readiness to accept unannounced arrival of top executives.
- Greets passengers, guests, and vendors upon arrival to provide assistance.
- Gives updates of changes to ETA/ETD's and assists in coordination of alternative arrangements for flights and ground transportation.
- Support all Aviation personnel with administrative needs.
- Respond to special requests and special projects.

SAFETY MANAGER

The Safety Officer is responsible for implementing the department's safety program. He must be a line pilot and

- Developing and implementing a proactive safety management system.
- Leading periodic personnel meetings concerning various safety-related topics.
- Maintaining a bulletin board to post relevant safety-related information.
- Monitoring upcoming safety seminars and programs, and making recommendations to the Director of Aviation regarding possible attendees.

TRAINING MANAGER

The Training Officer is responsible for overseeing, in conjunction with the Director of Aviation, the training requirements of all department pilot personnel. His duties include the following:

- Maintaining current records of all pilots.
- Overseeing the scheduling of all initial, recurrent and other periodic training necessary to meet the requirements as specified in this manual.
- Tracking the scheduling of training and ensuring pilots' upcoming training dates are input into the schedule.
CHAPTER 2

- Providing a minimum of 30 days advance notice to individuals scheduled for training and assuring appropriate training authorizations are completed when required.

PUBLICATIONS MANAGER

The Publication Officer is responsible for all technical publications relating to flight operations. His duties include:

- Maintaining a library for publications and reference materials, and acquiring those publications necessary for the performance of company flight operations.
- Maintaining an adequate supply of commonly used trip paperwork including flight planning worksheets, takeoff data cards and customs forms.
- Overseeing Jeppesen subscriptions for renewals, additions and deletions, as well as monitoring manual revision status.
- Assuring that all required manuals and documents are on board company aircraft and that they are current.
- Coordinating the addition or deletion of AFM supplements and revisions, weight and balance reports, and other technical data with the maintenance department.
- Reviewing flight manual revisions and assuring that all pilots are made aware of the highlights of such changes.
INTENTIONALLY LEFT BLANK
CHAPTER 3

CHAPTER 3: PERSONNEL ADMINISTRATION

Some personnel administration functions at the CORPORATE level are the responsibility of the AVIATION SOLUTIONS Corporation. Those functions unique to the Aviation Department are the responsibility of the Director of Aviation.

MINIMUM QUALIFICATIONS

In addition to the basic requirements for employment by Corporate Aviation Solutions, flight crew candidates must possess, or obtain before being assigned flight duty, the following:

- A valid U.S. Airline Transport Pilot certificate with a multiengine land rating.
- A valid first class medical certificate.
- A minimum of 1,500 total flight hours, of which 500 must be in multiengine airplanes.
- A valid U.S. passport.

In addition, both pilot and maintenance candidates must consent to the following:

- A check of previous employment history of not less than the preceding 5 years.
- A check of FAA records pertaining to any history of violations or administrative actions.
- A check of driving records.
- Random drug and/or alcohol testing.

MINIMUM QUALIFICATIONS

In addition to the basic requirements for employment by Corporate Aviation Solutions, maintenance technician candidates must possess the following:

- A valid U.S. Aircraft Maintenance Technician certificate.
- 12 months of experience as a licensed AMT.
- A valid U.S. passport, or the ability to obtain one.

In addition, both pilot and maintenance candidates must consent to the following:

- A check of previous employment history of not less than the preceding 5 years.
- A check of FAA records pertaining to any history of violations or administrative actions.
- A check of driving records.
- Random drug and/or alcohol testing.
CHAPTER 3

PERSONNEL RECORD KEEPING REQUIREMENTS

A record will be kept for each person employed by the department, and it is the responsibility of the individual manager to assure that these records are accurate and current. These records will contain the following information for all personnel:

- The employee's name, address, phone number, date and place of birth, passport number and expiration date and any other information necessary for the conduct of department business (i.e. information for visa applications).
- A resume covering a minimum of the five year period immediately preceding the date of employment, showing qualification for the position held.
- A record of all training received, including most recent completion certificates when applicable.
- Flight crew records will include duty assignments by aircraft type, and the date of each assignment.
CHAPTER 4

CHAPTER 4: PERSONNEL CONDUCT
The nature of Flight Department operations places our personnel in close contact with senior company management on a regular basis. This unique relationship requires that our conduct be professional at all times.

USE OF TOBACCO
Smoking or the use of other tobacco products by flight or ground personnel is prohibited on any CORPORATE AVIATION SOLUTIONS aircraft or in the hangar/office facilities.

CORRESPONDENCE
A department manager will review any correspondence of an official nature required of department personnel.

OUTSIDE EMPLOYMENT
While understanding that department personnel’s activities conducted on their own time is not the domain of the company, employment as a flight crewmember for other than CORPORATE AVIATION SOLUTIONS is not condoned without the written consent of the Director of Aviation. Personnel serving in military reserve or National Guard units will coordinate such activity with their direct supervisor.

CONFIDENTIALITY
Communication dealing with official company business, whether written or verbal, is proprietary information and will be treated as confidential. Care should be exercised to assure that non-company personnel do not have access to company documents. Department personnel should avoid discussions of trip details, aircraft ownership, aircraft performance or company operations with unknown persons. Always maintain a “need to know” attitude.
CHAPTER 4

CONSUMPTION OF ALCOHOL

The nature of flight operations to alcohol consumption. With department personnel.

Flight Crewmembers:
In addition to the requirements will apply:

• No alcohol will be consumed departure or scheduled per

• During business hours of 0 flight crewmembers will ret a scheduled day off.

Maintenance Technicians:
• No alcohol will be consum work period.

• During business hours of 0 maintenance technicians wi are on a scheduled day off.

FLIGHT CREW PHYSICAL

• Pilot flight crewmembers w the cost of which is reimbu

• No crewmember will accept which may affect their abili required FAA medical certi

• Flight crewmembers will e over-the-counter medicatio medications, an Aviation M

• No flight crewmember will of 35 feet within 24 hours d

• No flight crewmember will make blood donations within 72 hours of flight duty, or more than four times in a twelve-month period.
CHAPTER 5

CHAPTER 5: FLIGHT AND DUTY TIME

The flight and duty time guidelines contained in this section are the recommended standards for scheduling purposes. Due to the multitude of possible situations, it is not feasible to set requirements which do not have some operational flexibility. Emphasis will be placed on appropriate crew rest. Early coordination and intervention during the planning phase of trips’ objectives can be met while maintaining reasonable duty periods.

Any exceptions to the guidelines contained in this section must be approved by the Director of Aviation with the concurrence of the crew involved. The flight crew retains the authority to delay or cancel a flight, as appropriate, due to safety considerations related to crew fatigue.

STANDARD DUTY PERIOD

Flight crewmembers will normally be scheduled for a maximum duty period of 14 hours in any 24-hour period, with scheduled flight time during that period not exceeding 10 hours. Each standard duty period must be preceded by a rest period of not less than 10 hours.

EXTENDED DUTY PERIOD

Flight crewmembers may be scheduled for 16 hours of duty and 12 hours of flight time in a 24-hour period providing the following conditions are met:

- No more than two legs are flown during that duty period, and the intermediate stop is of short duration for the purpose of aircraft servicing only.
- The extended duty period must be preceded and followed by a rest period of not less than 1 1/2 hours.

FATIGUE RECOVERY / MULTIPLE TIME ZONES

At the conclusion of trips away from home domicile for 48 hours or more that include a time zone shift of five or more hours, there must be a 24-hour recovery period.
CHAPTER 5

DUTY PERIOD

For domestic flights crewmembers will report for duty and duty time will commence, 1.5 hours prior to the scheduled departure time of the flight. However, if a domestic flight is scheduled to depart after midnight and prior to 0700 local time, crewmembers must report for duty and duty time will commence at least 1 hour prior to the scheduled departure time of the flight. Special planning and consideration must be given to these instances to assure on-time departures with no impact on aircraft servicing or preparation (i.e., catering, deicing, fueling, etc.).

For international flights crewmembers will report for duty and duty time will commence, 2.0 hours prior to the scheduled departure time of the flight.

For domestic operations duty time ends one and a half hours after the block in time of the last flight of the day. For international operations duty time ends one hour after the block in time of the last flight of the day.

For the purpose of this section, flights to and from Canada, Bermuda, and the Caribbean will be considered domestic operations.

Note: pre-departure reporting times may be modified on an individual basis under special circumstances. These modifications to reporting times must be approved before the commencement of the trip.

DAY ROOMS

Day rooms will be made available to crewmembers for trips that approach standard duty time limits and have significant layover time at one stop.

FATIGUE

Many studies have been conducted regarding the negative effects of fatigue on flight crew performance. It is the responsibility of each individual crewmember to monitor him or herself and take full advantage of scheduled rest periods. This is particularly important in the case of late afternoon or evening departures.
CHAPTER 6

CHAPTER 6: STANDARD OPERATING PROCEDURES

GENERAL OPERATING RULES

All aircraft operations will be conducted in accordance with all applicable FAR, local and national laws, manufacturers’ aircraft manuals/limitation airworthy condition at all times. Aviation personnel are expected to utilize sound, conservative judgment in their approach to their duties. Safe transportation is the primary objective of the Department.

FLIGHT CREW CHECK-IN AND POST-FLIGHT PERIOD

Flight crewmembers shall check-in for domestic flights (North America) no less than one hour and 15 minutes prior to the scheduled departure time. Flight crewmembers shall check-in for international flights (other than North America) no less than two hours prior to scheduled departure time. An earlier check-in time may be designated by the Chief Pilot or by the Trip Captain when, in his/her judgment, the conditions warrant additional time prior to departure. The post-flight period is assumed to be 30 minutes for domestic flights and one hour for international flights.

FLIGHT PLANNING

The Trip Captain is responsible for flight planning, transportation, servicing requirements, reservations, etc. He/She may assign this duty to the other pilot but retains the responsibility for the task. The pilot accomplishing the flight planning shall make the maximum use of available information and specialized equipment (computer flight planning and commercial weather services) provided by the Department.

Normally, the Trip Captain will fly the first leg as PIC (Captain) when departing a Department base. Subsequent legs shall be alternated in accordance with operational qualifications and by mutual agreement.
REQUIRED PUBLICATIONS

Current copies of this manual, Aircraft Maintenance Log (Aircraft Maintenance Log), Deferred Maintenance Log (Deferred Maintenance Log), Minimum Equipment List (MEL) and FAR (J-Aid) must be carried on board each Company aircraft.

Each Company aircraft will carry a current set of aeronautical charts, instrument approach procedure charts for the area of operation and applicable supplemental information.

The charts, FAA-approved aircraft flight manuals, operating handbooks for each aircraft and for installed optional equipment will be provided through a subscription/revision service, as applicable. Each Department aircraft will carry on board a current set of these manuals/handbooks/supplements during all flight operations.

Additional and/or supplemental publications may be obtained as needed. The Chief Pilot must approve all airport-related subscriptions and major purchases of publications.

WEATHER

Prior to each flight, the PIC will obtain aviation weather information and analyze the following data to determine the effect on the proposed operations:

- Latest NOTAM for the point of departure, route of flight, the destination and the alternate destination.
- Surface weather observations for pertinent stations.
- Forecasts for all pertinent routes and stations.
- Reports or forecasts of severe weather, turbulence or icing which could affect the proposed flight.
- Any known air traffic delays.

Pilots will check weather forecasts sufficiently in advance of a proposed flight and notify Dispatch of any conditions that may affect passenger schedules. This includes checking weather forecasts the night before an early morning scheduled departure.

The PIC may delegate some of these duties; he/she maintains the responsibility.
CHAPTER 6

SEVERE WEATHER AND WEATHER DETECTION DEVICES

Flights into areas of known or forecast severe possible. When flight is necessary into areas of known or forecast severe weather activity will be accomplished using visual and airborne radar assistance.

An operable weather radar must be installed if operation is planned into areas of known or forecast thunderstorm activity where avoidance cannot be accomplished by visual means.

APPROACH AND LANDING MINIMUMS

Each Department pilot making an IFR takeoff or landing at an airport (domestic or foreign) shall comply with the applicable instrument approach and weather minimums published for that facility.

At airports where weather reporting services are available, Department pilots shall not initiate an instrument approach procedure unless the latest weather report for that airport reports the visibility at or above the published IFR landing minimums as depicted on the applicable instrument approach procedure chart.

If during an instrument approach that utilizes RVR for landing visibility, the RVR is reported to be below the required minimums before the aircraft has passed the FAF, the approach shall be abandoned and a missed approach shall be executed. If the aircraft is inside of the FAF when the RVR is reported to have gone below minimum conditions, the pilot may continue the approach to DH or MDA.

At airports where weather services are not available, the approach may be initiated and a landing executed if, when reaching the MDA or DH, the weather is found to be at or greater than that specified for the approach.

Department pilots shall not operate an aircraft approach below the authorized DH unless:

- the aircraft is continuously in a position from which a descent to a landing on the intended runway can be made at a normal rate of descent that will allow touchdown on the runway of intended landing.
- the flight visibility is not less than the visibility prescribed in the standard instrument approach procedure being used.
- where any necessary visual reference is specified by the FAA Administrator, at least one of the following visual references for the intended runway is distinctly visible and identifiable to the pilot:
CHAPTER 6

- the approach light system, except that the approach light system above the touchdown zone elevation unless the red terminating bars or the red lights are distinctly visible and identifiable.
- the threshold.
- the threshold markings.
- the threshold lights.
- the runway end identifier lights (REIL).
- the visual approach slope indicator (VAS).
- the touchdown zone lights.
- the runway or runway markings.
- the runway lights.

CIRCLING APPROACHES

Department fixed-wing aircraft will be operated to Category D weather minimums during circling approaches.

If, in the case of some international airports, Category D minimums are not listed then the criteria for Category D minimums will be used during circling approaches.

BRAKING ACTION REQUIREMENTS

Aircraft operated by the Department shall not takeoff or land on runways that are covered with ice and/or snow unless a runway condition/braking action report can be obtained prior to operation.

The PIC operating at airports where ice or snow covered runways are reported, or anticipated, must obtain runway condition reports and braking action reports, prior to operating at those airports.

A braking action report must be evaluated with regard to its source, timeliness and changes to be expected with fluctuations in temperature. The report must be evaluated with regard to its source, timeliness and changes to be expected with fluctuations in temperature. The reported braking action must be better than nil. Braking action reports of “fair or poor” are acceptable if the runway is into the wind and equals or exceeds the landing field requirement or the balanced field length requirement as defined in the airplane flight manual. Extreme caution should be exercised under these conditions. The PIC’s judgment shall always be the determining factor.
HIGH MINIMUMS CAPTAIN

The following restrictions apply to a new Captain in the make/model/series of aircraft that he/she has not completed 100 flight hours as PIC in another type of Department aircraft:

- Takeoff visibility of not less than ½ mile (RVR 2400/800 meters)
- The DH or MDA and visibility landing minimums must be increased by 100 feet and ½ mile respectively. This restriction applies to the takeoff alternate.
- The runway length of the intended runway must be at least 15% greater than that required by the AFM.
- The high-minimums PIC must notify Dispatch as soon as possible when it appears that the known or forecast weather conditions are sufficient for the planned flight.

SECOND-IN-COMMAND LIMITATIONS

Pilots who are not designated as Captain for the make/model/series of aircraft utilized may function as a second-in-command only. The following restrictions apply to a second-in-command pilot who has not completed 100 hours as SIC in the make/model/series of aircraft that he/she is assigned to fly:

- Make no takeoffs or landings from either seat except for training flights.
- May not fly with a high minimums captain.

A non-type rated SIC who has completed 100 hours as SIC in the make/model/series of aircraft that he/she is assigned to fly may make left seat takeoffs and landings on non-passerenger carrying flights when flying with a Standardization Pilot or a pilot designated by the [position title] when:

- Takeoff visibility is at least equal to or above the minimums for landing listed below.
- The DH or MDA and visibility landing minimums are increased by 100 feet and ½ mile respectively. This restriction applies to the destination airport, destination alternate and takeoff alternate.
- The runway length of the intended runway must be at least 15% greater than that required by the AFM.
- The crosswind component is less than 10 knots.
- There is no standing water, slush or loose snow present on the runway.
- The braking action is reported to be good or better.

A type-rated SIC with 100 or more hours may fly from the left seat during passenger carrying flights at the discretion of the PIC for that flight. **NOTE:** All flight operations are at the final discretion of the PIC for that flight.
CHAPTER 6

TAKEOFF MINIMUMS/TAKEOFF ALTERNATES

Unless lower takeoff minimums are specified on chart, or in this Manual, pilots shall use ¼ mile (all runways. Airports without an operating contr takeoff on all runways. If takeoff minimums are mile visibility shall apply for takeoffs under IFR.

In addition to the minimums specified herein, th uncontrolled airport operations. (i.e., other aircr pavement damage, etc.) and increase the takeoff given to the charted minimum climb rate for obs

If weather conditions at the time of takeoff are be designate a takeoff alternate not more than one h speed in still air with one engine inoperative. Be weather reports, forecasts, and NOTAM that the minimums and is expected to remain so for the required.

ALTERNATE AIRPORT REQUIREMENTS

Requirements for filing an alternate airport:

- Within the conterminous United States, a for a destination airport having a standar ceiling is forecast to be at least 2,000 fee elevation and the surface visibility is for destination airport for at least one hour b arrival at the destination airport.
- Within the conterminous United States destination airport not having a stand and visibility do not allow descent from VFR.
- In other countries and Alaska and Hawai destination airports unless the flight i for a particular destination airport, ar destination airport and to fly for at le consumption.

An airport may not be listed as an alternate airport weather reports or forecasts, or any combination

Developed by Corporate Aviation Solutions, LLC
Reproduction Not Authorized
CHAPTER 6

will be at or above the alternate weather minima specified on the applicable instrument approach procedure chart for that particular airport wherever the flight arrives.

On the Jeppesen instrument approach procedure chart, alternate weather minima are found in the “for filing as alternate” box. When alternate weather minima are not specified for a particular airport, approved minimum weather is:

- For airports having an approach with an electronic glideslope, a ceiling of 600 feet (180 meters) and a visibility of two miles (3200 meters).
- For airports with LOC, VOR, etc., and a visibility of two miles (3200 meters).
- For airports with no approved instrument approach, a ceiling of at least 1000 feet (300 meters) above the lowest MEA or MDA and a visibility of at least three miles (4.8 km).

Footnotes on the Jeppesen instrument approach chart specify additional applicable restrictions for filing the airport as an alternate airport.

In the event of a diversion to an alternate, regular Company and FAR or ICAO minimums become applicable. Rules applicable to high minimum pilots at regular airports apply equally at the alternate in this case.

NOISE ABATEMENT

Pilots will adhere to published noise abatement procedures and voluntary curfews except when the safety of flight is involved.

MINIMUM RUNWAY REQUIREMENTS

The minimum authorized runway lengths for use by fixed-winged aircraft owned/leased, operated, contracted or chartered by the Company shall:

- equal, or exceed, the balanced field length, as defined by the FAA and found in the AFM, corrected for ambient conditions, and;
- meet the aircraft climb performance requirements.

The following minimum runway lengths are for dispatch planning information only and are based on standard day (59°F), sea level, dry runway conditions. Altitude, temperature, runway surface conditions and surface wind direction and velocity will affect performance. Passengers must be advised by Dispatch that changing weather conditions can prohibit operations, reduce payload and range from these airports.

The PIC will be the final authority regarding operations to, from and on any airport. Dispatch must obtain prior approval from the [Position title] for operations at airports with less than:

Developed by Corporate Aviation Solutions, LLC
Reproduction Not Authorized
CHAPTER 6

- [XXXX] feet available for the [aircraft type].
- [XXXX] feet available for the [aircraft type].

Runways must be at least 75 feet wide, hard loading of the aircraft to be used. Runways equipped with functional runway edge lighting.

MINIMUM LANDING FUEL RESERVES

The following fuel quantities have been established as the minimum reserve fuel planned to be on board Company aircraft at the time of landing. Minimum fuel reserves are designed as an absolute minimum and are not intended to be used as than the specified quantity of fuel on board, explaining the use of the reserve specified to Standards within five working days.

- [aircraft type]: XXXX lbs.
- [aircraft type]: XXXX lbs.

OPERATING TO/FROM UNCONTROLLED AIRPORTS

The following are recommended operating procedures for operating on or in the vicinity of an uncontrolled airport. When approximately 15 miles out, pilots should ask ATC if there is any conflicting traffic and monitor the ATC frequency for traffic alerts. Approximately ten miles out, pilots shall broadcast, in the blind if necessary, position and intentions on the Common Traffic Advisory Frequency (CTAF) or Local Airport Advisory (LAA). Calls recommended on CTAF or LAA are:

- Ten miles out
- Entering downwind
- Base
- Final
- Exiting the runway.

IFR flight plans should not be canceled until and rescue will be initiated for overdue aircraft; that pilots broadcast the following on CTAF:

- Departing final approach fix
- On final approach
- Approach completed.
It is the responsibility of the PIC to ensure that the runway is clear. If conditions permit, an approach overhead the airport helps to verify runway in use, and increases the probability of visual acquisition by other aircraft.

When departing from the airport, broadcast departure intentions before taxiing and before taking the runway. Pilots should comply with the departure procedures for the airport including noise abatement procedures. Recommended procedures:

- Make frequent radio calls. Request other aircraft to identify themselves so that you are aware of each other's presence.
- Turn all exterior lights on. Dim interior lights as much as possible during night operation for better outside visibility.
- BE ALERT. Complete as many checklist items as possible before entering the pattern.
- Call the airport manager or the FBO prior to departing on the trip to inquire about runway conditions, weather, NOTAM, runway lighting, obstacles or any possible hazards.
- Review charts prior to flight and note minimum altitudes for terrain clearance.

AIRWORTHINESS DETERMINATION (PILOTS)

The final responsibility for determining airworthiness of the aircraft (FAR 91.7) rests with the PIC. In addition to completing a pre-flight check, the PIC shall thoroughly review the Aircraft Maintenance Log and Deferred Maintenance Log and satisfy himself/herself that the aircraft is in an airworthy condition. These responsibilities include:

- compliance with all applicable AD’s;
- that the planned flight or series of flights will not exceed the time remaining for the time/date maintenance requirements:
 - that all inspection due dates, hour or cycle limits have been carried forward and are not past due.
 - that all maintenance discrepancies have been corrected or deferred in accordance with the MEL. All maintenance record entries shall be completed and signed by a certified technician approving the aircraft for return to service.
- that the deferred items do not render the aircraft unsuitable for the planned flight or series of flights.
- that all required equipment and documents are on board.

AIRCRAFT PRE-FLIGHT CHECK

Pre-flight checks are to be accomplished by a pilot in accordance with the type-specific Aircraft Flight Manual. Upon completion of the pre-flight check, the pilot completing the check shall make an entry in the current Aircraft Maintenance Log.
USE OF MINIMUM EQUIPMENT LIST (MEL)

The FAA requires that all systems, components and equipment must be in operating condition prior to aircraft dispatch unless allowed to be deferred by an FAA-approved copy of the MEL will be carried on board. If an aircraft system becomes inoperative away from the home base, the pilot will enter the discrepancy in the Aircraft Maintenance Log. Any of placards required by the MEL must be complete.

VOR CHECK

The Trip Captain or his/her designee shall complete or verify completion in accordance with FAA regulations. If a VOR check is due, the pilot shall complete the check and make an entry in the Aircraft Maintenance Log.

FROST, SNOW AND ICING

No pilot shall attempt a takeoff if the aircraft has frost, snow or ice adhering to any windshield, powerplant installation, flight or rate instrument system, wings, control surfaces or other areas that could affect flight characteristics or performance.

Aircraft that are found to have frost, snow or ice accumulations must be deiced in accordance with the aircraft manufacturer’s recommended procedures. If existing conditions could cause accumulations to reoccur, the PIC must ensure that the aircraft is deiced as often as necessary based on deicing product specifications and observed conditions. Prior to takeoff, the PIC must determine that there is no accumulation that would affect performance of the aircraft.

Flight must not be attempted into known or forecast icing conditions unless the aircraft deicing/anti-icing systems are fully functional. No Company aircraft shall be flown into known severe icing conditions.

TOWING

All towing operations will be performed in accordance with the appropriate sections of the AFM and/or manual.
CHAPTER 6

AIRCRAFT REFUELING PROCEDURES

The Trip Captain is responsible to ensure that fuel of the proper grade and quality and the desired amount is placed into the aircraft fuel tanks. The Trip Captain may delegate the fueling of the aircraft but retains the responsibility. The crew equipment is labeled with the name of the product ordered and is not under any part of the aircraft that could settle during refueling. The crewmember should not be backed up to the aircraft and should maintain a safe distance from the aircraft in case of a malfunction or emergency.

Passengers cannot remain onboard the aircraft during refueling unless there is a crewmember present in the cabin and positioned near the cabin door. The main entry door must remain open. No smoking is permitted during refueling.

The fuel truck should be bonded to the aircraft at the nozzle ground wire attached before any fuel cap is opened or the nozzle is connected to the single-point refueling system. The crewmember should set up the refueling control panel unless the person operating the refueler has been determined to be competent.

When required by aircraft type and/or mission a crewmember shall remain in the vicinity of the aircraft until the refueling has been completed. A flight crewmember shall ensure that the refueling panel and fuel cap(s) are secure and determine that all bonding wires have been disconnected from the aircraft.

If there is any question as to the quality of the fuel, the crewmember will request that a sample be taken from the delivery nozzle being used to refuel the aircraft. Fuel samples should have a clear and bright appearance and have no evidence of free or suspended (cloudy or hazy) water and have no visible particulate matter (dirt, rust, etc.). Fuel that is not clear, clean and free from water should not be accepted.

CABIN EMERGENCY EQUIPMENT

Emergency equipment meeting the requirements specified in FAR 91.513 and passenger briefing cards are carried on Department aircraft. Each crewmember shall be familiar with the location, condition and operation of the emergency equipment carried on board the aircraft.

SURVIVAL EQUIPMENT REQUIREMENTS

No flight will be conducted over water that is more than 30 minutes flying time, or 100 nautical miles from the nearest shoreline unless the equipment specified in FAR 91.509 is carried on board.
CHAPTER 6

the aircraft. Additional equipment may be carried in areas such as the arctic regions, deserts, jungle, etc.
The Trip Captain will ensure that the proper amount of departure and that each crewmember is aware of equipment.

BAGGAGE LOADING/STORAGE

Baggage will be placed in designated compartments, aisles or normal/emergency egress routes. Passengers will be flight. Baggage must be secured for takeoff and requirement. All baggage must be properly positioned the load limits for each compartment or area of the installed. Cabin baggage, including briefcases, must be becoming a projectile during takeoff, landing or

CABIN ANNOUNCEMENTS/BRIEFINGS

Pilots are to keep passengers informed of delays flight before each takeoff. The PIC shall ensure the following: FAR Part 91, which includes the following:

- Use and operation of seat belts/shoulder
- The requirement for seats to be returned to the stowed position during takeoff and landing
- The location and operation of emergency exits
- The location and operation of survival equipment
- Use of the Smokeshield respirator device
- Use of oxygen
- Smoking
- Stowage of loose articles and hand baggage
- Use of portable electronic devices

Recorded briefings may be used and supplement carried in a location that is visible and convenient.

Prior to flights requiring flotation equipment, pilots must be briefed on its use.

The aircraft will not take the runway for departure with fastened seatbelts and loose articles properly stowed.
PORTABLE ELECTRONIC DEVICES

No person shall operate a personal radio transmitter or any other electronic device known to emit electromagnetic or radio frequency emissions that could interfere with the aircraft navigation systems during flight.

STERILE COCKPIT

Crewmembers will eliminate all extraneous cockpit conversation that does not apply directly to the operation of the aircraft anytime the aircraft is in motion on the surface, or airborne, while operating below 10,000 feet MSL.

The sterile cockpit environment will also be maintained during climbs and descents when within 1000 feet of reaching an assigned altitude.

ADMISSION TO THE COCKPIT/JUMP SEAT

No person shall be admitted to the cockpit except as defined herein:

- A crewmember assigned to the flight (PIC, SIC, Maintenance Technician, Flight Attendant).
- A person engaged during flight for the purpose of checking pilot performance for a government agency (FAA Examiner or Designated Pilot Examiner).
- A Department Standardization Pilot to provide pilot training or conduct a flight crew performance evaluation.
- Company maintenance technicians or other technical personnel directly involved in maintenance related activities requiring an in-flight evaluation or adjustment.

A passenger may occupy the jump seat (observer’s position) during takeoff, landing and/or cruise flight at the discretion of the PIC. This passenger must also have a cabin seat available in case of an emergency situation arising.

Anyone occupying the jump seat for takeoff and/or landing must be thoroughly briefed on the following:

- operation of the jump seat
- use of the oxygen mask
- sterile cockpit procedures
- actions to take in case of an emergency

OPERATION OF FLIGHT CONTROLS
CHAPTER 6

Only Department employees designated as pilots, FAA Pilot Examiner or Designated Pilot Examiner, or Company designated instructor pilot may manipulate the flight controls of any Company aircraft.

PILOTS AT DUTY STATION DURING FLIGHT

Pilots shall remain in the cockpit at all times during flight or passenger safety requirements. During take-off, climb, descent, landing, and IMC, both pilots shall be seated at their duty stations with seat belts and shoulder harnesses fastened. One pilot shall remain at the controls with his/her seat belt fastened at all times. (See also Crew Member Use of Supplemental Oxygen.)

CREWMEMBER USE OF SUPPLEMENTAL OXYGEN

Pilots must be familiar with the use of the quick-donning flight deck oxygen masks. When stowed, the oxygen masks must be set to 100% and in a "ready" position. If it is necessary for one pilot to leave his/her station when operating at flight altitudes above 35,000 feet, the remaining pilot at the controls shall put on and use his/her oxygen mask until the other pilot has returned to his/her station. Each pilot shall ensure that the flight deck oxygen mask provided for his/her use is properly adjusted to provide a good fit and male pilots shall maintain any beard or mustache in a manner that will allow the oxygen mask to properly seal against the face of the wearer.

All flight deck positions, including the jump seat, must be equipped with an operational and suitable oxygen mask when occupied at altitudes above 12,500 feet MSL.

STANDARDIZATION PROGRAM

The Department Standardization Program encompasses the use of Standard Operating Procedures (SOP’s) and Standardization Flights to ensure the effective delegation of responsibility and division of workload among the flight crewmembers. Crew coordination is essential in the safe operation of Department aircraft. The use of SOP’s, checklists, and terminology creates a standardized system whereby the pilots become immediately aware of any departure from the normal sequence of events or normal system operations. The use of these SOP’s will place the flight crew in the best position to recognize potential problems and respond to emergency/abnormal situations in the proper manner.

Flight crews are not authorized to deviate from Department procedures unless the deviation is in the best interest of safety. All such deviations must be reported to the [Position title] within 24 hours.
hours of the occurrence. A constant evaluation and suitable for Department flight operations.

The PIC retains the final authority for the cond Department SOP’s, the PIC must clearly establ responsibilities so that there will be no confusie

The PF operates or commands the operation of autopilot and his/her primary responsibility is to

The PNF performs all other cockpit duties incl

- In normal flight - Navigates, communic equipment, monitors the radar and fligh paperwork and other tasks, as directed.
- During emergencies or abnormal sy: reads/accomplishes checklists, perf

All emergency actions taken by the PNF should obtained prior to taking the action. If an app: PNF shall immediately notify the PF of the devi traffic clearance or routing. The PF and the PN initiating the following:

- A change in aircraft configuration.
- A transferring of aircraft control.
- Selection or change of navigation ec
- Checklist initiation and completion.
- A change in altitude.

PRE-DEPARTURE BRIEFING

The PIC shall conduct a pre-departure briefing crewmembers to enhance team-building and set

USE OF CHECKLIST

The Department SOP’s are based on the systen checks (normal, abnormal, emergency etc.). SC be stated as written.

STANDARD OPERATING PROCEI
The following Standard Operating Procedure (SOP) is to be utilized in all routine fixed-wing flight operations conducted by the department. Any deviation from this SOP as dictated by conditions, or circumstances, must be thoroughly briefed by the Pilot Flying and understood by all crew members.

BEFORE STARTING ENGINES CHECK

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-flight check completed.</td>
<td>The cockpit pilot using the Before Starting Engines checklist. However, should be verified by both pilots prior to starting engines.</td>
</tr>
<tr>
<td></td>
<td>- Completion of the Before Starting Engines checklist</td>
</tr>
<tr>
<td></td>
<td>- Flight Management Systems (FMS) data entries</td>
</tr>
<tr>
<td></td>
<td>- Navigation system setup</td>
</tr>
<tr>
<td></td>
<td>- TOLD information</td>
</tr>
<tr>
<td></td>
<td>- ATC clearance</td>
</tr>
<tr>
<td></td>
<td>- Altitude alert/preselect</td>
</tr>
</tbody>
</table>

STARTING ENGINES CHECK

A minimum of one person qualified to operate an aircraft engine must be seated in a pilot seat when an aircraft engine is started, or running. Engines will be started utilizing the proper checklist procedures. Before starting an engine, the immediate area around the aircraft must be visually checked for potential hazards to ensure a safe start. Pilots should make an effort to have a line service person act as an outside observer during engine starts whenever practical. All engines must be started before commencing taxi.

The ATC clearance should be obtained and reviewed prior to starting engines if practical.

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
</tr>
</thead>
</table>
| Before Starting Engines check complete | Start engines utilizing a flow pattern check.
CHAPTER 6

AFTER STARTING ENGINES CHECK

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>After engines have been started</td>
<td>Call, “After Starting Engines Check”</td>
</tr>
<tr>
<td>Complete Aft Engines checklist</td>
<td></td>
</tr>
</tbody>
</table>

TAXI CHECK

Nosewheel steering and braking should be checked as soon as possible during taxi and while speed is very low.

When any Department aircraft is to be moved under its own power, two persons qualified to taxi the aircraft are required to be seated in the pilot seats with seat belts fastened and seats and controls properly adjusted. Operation on crowded ramps and taxiways requires the attention of both pilots. Paperwork and other cockpit duties shall not be accomplished while taxiing in close proximity to other aircraft or obstructions. Both pilots shall maintain maximum possible vigilance.

The aircraft will not be taxied unless both pilots determine that there is enough clearance to maneuver the aircraft safely. When adequate clearance is in doubt, the aircraft should be towed.

Systems checks should be accomplished so that, at least, one pilot is maintaining vigilance. Checks should be accomplished at times and locations that minimize exposure to a ground mishap and appropriate for verification of system integrity.

It may be necessary for the pilot not flying (PNF) to get the clearance during taxi. If possible, cockpit flow should be managed to avoid this. However, when the PNF is required to copy the clearance during taxi, the pilot flying (PF) must maintain vigilance and care in taxiing. Changes to any clearance/procedure prior to departure shall be reviewed by both pilots with the airplane stopped.

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>All engines running and After Starting Engines checklist complete</td>
<td>Call, “Ready to taxi”</td>
</tr>
<tr>
<td>After taxi clearance received</td>
<td>Call, “Clear left”</td>
</tr>
<tr>
<td>When clear of congested area</td>
<td>Call, “Taxi check complete”</td>
</tr>
<tr>
<td>Complete Taxi check</td>
<td></td>
</tr>
</tbody>
</table>

Developed by Corporate Aviation Solutions, LLC
Reproduction Not Authorized
CHAPTER 6

TAKEOFF BRIEFING

Prior to taking the active runway for takeoff, and brief the PNF, with regard to:

- Special factors influencing this takeoff (crosswind, deviations from the norm, etc.).
- Verify the airspeed settings (bugs) and power settings to be used.
- Verify the navigation equipment setup.
- Verify the initial flight clearance (headings, altitudes, etc.).
- Review the emergency return plan.
- PF will complete the briefing by asking: “Do you have anything to add?”
- If the PNF has nothing to add, he/she will state: “I have nothing to add.”
- If the PNF has questions or comments, they will be addressed before continuing the checklist.

Note: Standard Briefing - Abort for any warning light or reason up to 80 knots. After 80 knots, up to V1, abort for:

- Engine fire/failure
- Thrust reverser deployment
- Aircraft control problem
- Any WARNING condition

After V1, continue the takeoff and handle the problem as an airborne emergency. The PNF will silence the aural warning.

BEFORE TAKEOFF CHECK

Both pilots will review any changes in the ATC clearance. All Before Takeoff checklist items must be completed before the takeoff roll commences. This operation is the final check before the flight phase and must be properly completed.

The aircraft parking brake will not be set while on the active runway.

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi Check Complete</td>
<td>Call, “Ready”</td>
</tr>
<tr>
<td>Cleared onto active runway</td>
<td>Call, “Before”</td>
</tr>
</tbody>
</table>

Developed by Corporate Aviation Solutions, LLC
Reproduction Not Authorized
TAKEOFF PROCEDURES

Takeoff power must be set prior to attaining 60 requirements for the aircraft gross weight, or by takeoff procedure, as shown below. Refer to the procedure that will be utilized.

Takeoff

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Takeoff check complete</td>
<td>Hold brakes, advance power to takeoff setting as per AFM</td>
</tr>
<tr>
<td></td>
<td>Release brakes</td>
</tr>
</tbody>
</table>

Takeoff Roll

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before airspeed indication</td>
<td>Maintain directional control</td>
</tr>
<tr>
<td>Positive airspeed indication</td>
<td>Verify airspeed</td>
</tr>
<tr>
<td>At 80 knots</td>
<td>Call, “My Yok from steering”</td>
</tr>
<tr>
<td>At V1</td>
<td></td>
</tr>
<tr>
<td>At VR</td>
<td>Rotate aircraft per AFM</td>
</tr>
<tr>
<td>At V2</td>
<td></td>
</tr>
</tbody>
</table>
AFTER TAKEOFF CHECK

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive rate of climb</td>
<td>Call, “Positive Rate”</td>
</tr>
<tr>
<td>Gear Indicates Up</td>
<td></td>
</tr>
<tr>
<td>At 400 feet AGL or briefed flap retract height</td>
<td></td>
</tr>
<tr>
<td>At flap retract speed</td>
<td>Call, “Flaps Up”</td>
</tr>
<tr>
<td>Flaps Indicate UP</td>
<td></td>
</tr>
<tr>
<td>Above 3000 feet AGL</td>
<td></td>
</tr>
</tbody>
</table>

ALTITUDE VERIFICATION PROCEDURE

The following procedures will normally be used regardless of which pilot is flying:

- The Pilot-Not-Flying sets the altitude and points to the altitude alerter.
- The Pilot-Flying points at the new altitude and verbally acknowledges it.

If there is anything other than total agreement by both pilots during the verification process, ATC is to be contacted immediately to resolve the conflict. If you do not understand or is understood differently by any crewmember, always seek verification of any clearance you do not understand or is understood differently by any crewmember. NEVER resolve a clearance conflict issued by cockpit consensus alone. Do not leave an assigned altitude if there is any question about a newly assigned altitude until it has been verified with ATC.
ALTITUDE CALLOUT PROCEDURE

The PF will verbalize leaving the altitude 1,000 feet prior to an assigned altitude. The callout is to include the altitude vacating and the assigned altitude “Flight level three-zero-zero for two-niner-zero” and validate the call by stating “one to go”. If the call and the PF shall validate the call.

APPROACH AND LANDING BRIEF

The PNF shall have the appropriate navigation and approach charts organized and readily available. The PNF shall obtain the destination weather and the approach in use and advise the PF. The PNF shall complete the landing data computations (or verify if already computed) and enter or post numbers, as applicable.

Both pilots shall review the information and procedure. The PF shall brief the PNF of his/her intentions. The briefing should be concise and not be an attempt to memorize the approach procedure. It should include a review of the pertinent information and any special conditions, or procedures, that will be utilized for the approach and landing.

The 4 “M” ‘s should be reviewed as follows:

- MSA.
- Marker altitude.
- Minimum altitude.
- Missed approach procedure.

Setup and use of navigation equipment and/or automation shall be briefed as applicable. If any abnormal conditions occurred during the flight which will have an effect on the intended approach and landing those implications must be thoroughly briefed and understood by both pilots.

- PF will complete the briefing by asking “Do you have anything to add? ”
- If the PNF has nothing to add, he/she will state “I have nothing to add.”
- If the PNF has questions or comments, they will be addressed before continuing the checklist.

APPROACH CHECK

Complete the Approach check when below 10,000 feet MSL or within 15 minutes of the destination airport.
APPROACH PROCEDURES

PILOT FLYING

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>After initial vector/ heading from airway for approach, complete cockpit setup</td>
<td></td>
</tr>
<tr>
<td>When appropriate call “Flaps (15 or 10)°”</td>
<td></td>
</tr>
<tr>
<td>When cleared for intercept (LOC) select NAV/ APP</td>
<td></td>
</tr>
<tr>
<td>If cleared for precision approach, select APP mode</td>
<td></td>
</tr>
<tr>
<td>At initial convergence of localizer, call “Localizer alive”</td>
<td></td>
</tr>
<tr>
<td>When annunciators indicate localizer capture, call, “Localizer capture”</td>
<td></td>
</tr>
<tr>
<td>At initial downward movement of glide slope raw data indicator, call, “Glide slope alive”</td>
<td></td>
</tr>
<tr>
<td>At two dots below glide slope or 3-5 miles prior to FAF, call “Gear Down”</td>
<td></td>
</tr>
<tr>
<td>At one dot below glide slope intercept or 1-2 miles outside FAF, call, “Flaps (25 or 20)°”</td>
<td></td>
</tr>
<tr>
<td>When glide slope is captured call “Glide slope capture”</td>
<td></td>
</tr>
<tr>
<td>Call, “Flaps Full, Before Landing Checklist”</td>
<td></td>
</tr>
<tr>
<td>At OM or FAF, call, “Outer marker (or FAF)”</td>
<td></td>
</tr>
<tr>
<td>For Non Precision Approach</td>
<td></td>
</tr>
<tr>
<td>For Precision Approach</td>
<td></td>
</tr>
<tr>
<td>Acknowledge, “Runway lights in sight” or “Runway in sight”</td>
<td></td>
</tr>
<tr>
<td>“Going Around” Immediately execute missed approach procedures</td>
<td></td>
</tr>
<tr>
<td>If visual contact is lost call, “Going Around” and execute missed approach procedure</td>
<td></td>
</tr>
</tbody>
</table>

Developed by Corporate Aviation Solutions, LLC
Reproduction Not Authorized
MISSED APPROACH

<table>
<thead>
<tr>
<th>PILOT FLYING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Call, “Going Around” while advancing thrust levers to Go Around power setting.</td>
<td></td>
</tr>
<tr>
<td>Depress Around button and rotate positively to a Go Around attitude (command bars). Maintain approach climb speed or V_2, whichever is greater.</td>
<td></td>
</tr>
<tr>
<td>Call, “Flaps (15 or 10)$^\circ$"</td>
<td></td>
</tr>
<tr>
<td>Call, “Gear up”</td>
<td></td>
</tr>
<tr>
<td>Call “Flaps up”.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEVIATION CALLOUTS

PILOT FLYING

<table>
<thead>
<tr>
<th>Deviation</th>
<th>Call, “Correcting”</th>
</tr>
</thead>
<tbody>
<tr>
<td>One dot deviation from glideslope</td>
<td></td>
</tr>
<tr>
<td>One dot - LOC / VOR</td>
<td></td>
</tr>
<tr>
<td>Bearing pointer more than 5 degrees from course</td>
<td></td>
</tr>
<tr>
<td>Rate of descent exceeds 1,000 fpm, after stabilization</td>
<td></td>
</tr>
<tr>
<td>Airspeed trending to go below or is indicating < REF or Airspeed > 10 knots above briefed approach speed</td>
<td></td>
</tr>
</tbody>
</table>

At 500 ft AGL for straight in approach or 300 ft AGL for a circling approach, call "REF plus____, Sinking_____, Three Green, Flaps Full, Cleared to Land"
CHAPTER 6

STABILIZED APPROACH CRITERIA

All flights must be stabilized by 1,000 feet above airport conditions (IMC) and by 500 feet above airport elevation (VMC). An approach is stabilized when all of the following criteria are met:

- The aircraft is on the correct flight path;
- Only small changes in heading/pitch are required to maintain the correct flight path;
- The aircraft speed is not more than VREF + VREF;
- The aircraft is in the correct landing configuration;
- Sink rate is no greater than 1,000 feet per minute; if an approach requires a sink rate greater than 1,000 feet per minute, a special briefing should be conducted;
- Power setting is appropriate for the aircraft configuration and is not below the minimum power for approach as defined by the aircraft operating manual;
- All briefings and checklists have been conducted;

Specific types of approaches are stabilized if they also fulfill the following:

- Instrument landing system (ILS) approaches must be flown within one dot of the glideslope and localizer;
- Category II or Category III ILS approach must be flown within the expanded localizer band;
- During a circling approach, wings should be level on final when the aircraft reaches 300 feet above airport elevation; and,

Unique approach procedures or abnormal conditions requiring a deviation from the above elements of a stabilized approach require a special briefing.

An approach that becomes unstabilized below 1,000 feet above airport elevation in IMC or below 500 feet above airport elevation in VMC requires an immediate go-around.
CHAPTER 6

VISUAL APPROACH

Reported weather at the airport must have a ceiling of at least 1000 feet and visibility of at least 3 miles.

Landing flaps will be selected no later than 500 feet AGL until landing. The stabilized approach requires the aircraft to be established on the desired track, glide path, in landing configuration.

AFTER LANDING

During the landing roll out, only those switches should be moved. Any additional switch or lever exited the runway (or completed a 180-degree turn). The PF will call for the "AFTER LANDING CHECK" accomplished on the runway, if back taxiing, or exited the runway (or completed a 180-degree turn). The strobe lights should remain on until clearing the active runway.

Any time an engine is left running when loading or off-loading passengers or cargo, one pilot will assist in the loading or off-loading while the other pilot remains at his position in the cockpit.

POST-FLIGHT CHECK (PILOT)

If a post-flight inspection will not be accomplished by Department maintenance personnel after the completion of the last flight of the day, the Trip Captain, or his/her designee, shall conduct a walk-around check of the aircraft, noting any oil or fuel leaks, abnormal wear or damage to the aircraft. Any discrepancies found during this walk-around check are to be listed in the Aircraft Maintenance Log. The Trip Captain will notify Maintenance if there is any question as to the airworthiness status of the aircraft.

FLIGHT CREW DEBRIEFINGS

In order to continuously evaluate and improve department procedures and enhance interpersonal skills, crewmembers should conduct post-flight debriefings after each flight. The debriefings should include all crewmembers of the flight, as practical, and be discussed from the self-discovery perspective.
CHAPTER 7: INTERNATIONAL PROCEDURES

REGULATORY COMPLIANCE

When conducting international flights, pilots of Company aircraft must adhere to the US Federal Aviation Regulations, ICAO rules and the regulations of the countries in which they land in or over-fly.

Flight crews must be familiar with and comply with the procedures of the host country where operations exist between the US Federal Aviation Regulations and the most restrictive of these regulations will apply.

Flight regulations for oceanic operations and specific MNPS and RVSM airspace, can be found specifically in Annex 2, ICAO Rules of the Air and Advisory Circular AC 91-70.

If a deviation in an emergency situation violates local regulations or procedures, the PIC will notify the appropriate local officials without delay. If required by the state where the incident occurs, the PIC shall submit a written report to the appropriate authority in that state.

CREW QUALIFICATIONS AND TRAINING

All flight crew members who fly international flights shall attend an International Procedures course approved by the [Position title] prior to their first international flight.

For a flight crewmember to be considered qualified for international operations, the flight crewmember must be knowledgeable in the following:

1) ICAO operational rules and regulations
2) ICAO measurement standards
3) Use of oceanic flight planning charts
4) Sources and contents of international flight publications
5) Itinerary planning
6) FAA International Flight plan, ICAO Flight plan and flight log preparation
7) Route planning within special use airspace
8) International en route and terminal procedures
9) Long range, air-to-ground communication
10) Structure of special use airspace where operations exist
11) Air traffic clearances
12) International meteorology, including tropopause charts and TAF’s
CHAPTER 7

13) Specific en route navigation procedures required in special use airspace
14) Emergency procedures, including use and rescue techniques, navigation equipment failure techniques.
15) Proper contingencies for emergencies
16) Wet ditching and water survival procedures.

REQUIRED DOCUMENTS

It is the PIC’s sole responsibility to ensure all
- MNPS/RVSM/RNP-10 Letter of authorization
- Aviation Insurance Policies
- Mexican Insurance Policy
- Noise certificate
- Customs overflight permit

This is in addition to all other documentation in this Manual.

REQUIRED EQUIPMENT

The following equipment is required on all international flights:
- Emergency medical kits
- Survival equipment required for trip as required by FAR 91.509.
- Radio equipment as required by FAR 91.511.
- Equipment as required by the route flown and/or the country overflown.

Trip Planning

All international trip preparation is the responsibility of the Trip Captain. The Trip Captain shall assign flight crewmembers planning duties as he/she sees fit. The Trip Captain shall keep all crewmembers informed of the status of the trip planning process. The use of outside planning and weather agencies will be at the discretion of the Trip Captain.

PERMITS AND ENTRY REQUIREMENTS

When operating Department aircraft across international borders or in international airspace, the Trip Captain will insure that the crew and passengers are in full compliance with each country’s passport, visa, aircraft entry and health requirements prior to entry.
CHAPTER 7

Confirmation of overflight or of landing must be obtained in writing prior to the planned flight.

INTERNATIONAL NAVIGATION

Prior to departure on an international flight, the Trip Captain will ensure that an up to date coverage of all required navigation charts, including SID's, en route, STAR's, terminal and hi and lo altitude charts are on the aircraft. The International Flight Information Manual and the FAA International Notices to Airmen will be available prior to flight.

TRIP BRIEFING

As with all domestic flights, prior to an international flight the Trip Captain will have a preflight briefing with the flight crew. In addition to a standard briefing, the crew will also discuss:

1) itinerary
2) required permits
3) all required documents
4) destination and alternate topography features
5) destination approach facilities
6) possible alternate airports
7) CFIT risk assessment
8) handling arrangements
9) passenger and crew accommodations
10) security need and arrangements
11) inspection of required equipment
12) status of the international checklist

NOTAM’S, TRACK MESSAGES

Prior to any international flight the Trip Captain will assure that international NOTAM’s and Track messages are requested from and received from approved Flight Planning and Weather Services, International Flight Service Stations (IFSS) or airport meteorological stations (MET).

TIME KEEPING

An important part of all Oceanic and Class II navigation is the reference of time for position reporting and predicting the availability of GPS receiver autonomous integrity monitoring (RAIM). All CORPORATE AVIATION SOLUTIONS operations within this airspace will be conducted using GPS time. All FMS's without automatic update functions will be initialized with GPS time as displayed on the GPS sensor page. Reference to time will be in the form of UTC in lieu of GMT when using GPS time.
CHAPTER 7

NORTH ATLANTIC MNPS OPERATIONS

The following procedures apply Minimum Navigation Performance Specification (MNPS) airspace defined as that portion of the North Atlantic between 27 degrees north latitude and the North Pole, between FL285 to FL420 and bounded on the east and west by the control areas of New York, Gander, Santa Maria, Shanwick and Reykjavik. A high degree of navigation accuracy is required for operation within MNPS airspace. This is achieved through the requirement for approved navigation equipment, flight crew training and standardized operating procedures.

Crews must have a thorough understanding of the MNPS airspace and the requirements for operating within it. Each aircraft and operator intending to operate within this airspace must be certified by their state of registry that they meet the navigational and crew training requirements set forth by the International Civil Aviation Organization (ICAO). This certification for U.S. registered aircraft is in the form of a Letter of Authorization (LOA) issued by the FAA. The LOA must be carried on board the aircraft during operations within MNPS airspace.

Detailed information pertaining to MNPS airspace can be found in the North Atlantic MNPS Airspace Operations Manual published by the FAA, as well as on the rear panel of the AT1 & 2 Atlantic enroute navigation chart.

RVSM AIRSPACE

RVSM airspace is defined as any airspace or route where aircraft are separated by 1,000 feet vertically between FL290 and FL410 inclusive. Each aircraft and operator intending to operate within this airspace must be certified by their state of registry that they meet the height keeping, airworthiness and operations requirements set forth by ICAO. As with MNPS airspace, U.S. registered aircraft receive this authorization in the form of an LOA.

RVSM is being implemented in various airspace throughout the world. In most cases, this implementation is phased in so that 1,000 foot separation does not initially apply to all altitudes above FL290. Therefore, it is imperative that flight crews familiarize themselves with all relevant and current publications and NOTAMS to determine current boundaries of RVSM airspace.

PRE-FLIGHT ACTIONS

In addition to standard preflight actions, crews intending to operate within MNPS airspace will comply with the following:

- Examine the aircraft discrepancy log to verify that all required navigation and communication equipment is operative.
• Obtain a computer flight plan as the master navigation document. This plan should be filed a minimum of two hours prior to the scheduled departure time.

• Obtain and review any track messages and maps that will be current during the flight, even if opposite in direction. This allows the crew to be aware of the flow of traffic relative to their planned flight.

• For flights planned on a track, the coordinates in the track message will be compared with those on the flight plan.

• Obtain and review applicable NOTAMS, including those relating to GPS. The following preflight actions will also be accomplished for those flights planned to operate within RVSM airspace:

 The following preflight actions planned to operate within RVSM airspace:

• Examine the aircraft discrepancy log to verify that all equipment required for operations in RVSM airspace is operative. The MEL will be consulted for guidance as to specific items which must be operative.

• During the external inspection of the aircraft, particular attention should be paid to the condition of the static sources and the condition of the fuselage skin in the vicinity of each static source. Any damage or deformation in these areas will be brought to the attention of maintenance personnel before flight within RVSM airspace. This preflight check may be accomplished by the flight crew or by maintenance personnel.

• Before takeoff, all aircraft altimeters will be set to the local altimeter setting (QNH) and should display a known elevation (field elevation or touchdown zone elevation if at a runway hold point) within ±75 feet. The two primary altimeters should also agree with each other within 75 feet.

FLIGHT PLAN LOADING PROCEDURE

One crewmember will be responsible for loading the flight plan into the Flight Management Systems (FMS). The following procedure will be utilized for all manually loaded LAT/LON waypoints:

• Coordinates will be verified and distances between successive waypoints generated by the FMS will be compared to those on the flight plan.
CHAPTER 7

- When the entire flight plan be compared with that sho
- Before entry into oceanic a validity of the FMS wayp
- course/distance information circled when verification is

INFLIGHT PROCEDURES
Prior to entry into MNPS airsp

- Confirm that the following
 1. Two (2) approved l providing a continu
 2. One (1) communic: (HF or SATCOM v

The following actions will als operate within RVSM airsp

- Confirm that the following
 1. Two (2) primary alt
 2. One (1) automatic :
 3. One (1) altitude ale

- Perform and record an initi standby altimeters are set t
 displayed on each altimeter contingency situations. In
 waypoint (when not in rad:
 with RVSM airspace (whi

Should any required equipme use airspace, a new clearance airspace.

- After receipt of the oceanic the flight plan routing. If tl routing, the new route will
outlined in this chapter. Applicable will be crossed out.

- Each waypoint and a course line between successive waypoints will be plotted on a plotting chart once the clearance has been verified. If the cleared routing is the same as the flight plan routing, it is not necessary to manually measure the course and distance between successive waypoints. However, if a re-route has been received, the course and distance between each waypoint will be manually measured and noted on the plotting chart. This will then be compared to the FMS information for cross-checking purposes.

- Ground-based navaids should be monitored as long as possible to verify position and the accuracy of the FMS's.

- As soon as practical, the flight crew will obtain the assigned HF communication frequencies and conduct a radio and SELCAL check. While in MNPS airspace, a continuous listening watch will be maintained on 121.5 and 123.45 VHF.

- Upon waypoint passage, the flight crew will confirm the coordinates, desired track, distance and time to the next waypoint. The position report will be made and the previous waypoint will be crossed out on the flight plan.

- A post position plot will be performed and recorded approximately ten (10) minutes or two (2) degrees after passing each waypoint. An additional plot will be recorded at the midpoint of each leg. This plot will consist of the LAT/LON reading of the navigating FMS and the time of the plot.

- If a significant discrepancy appears between FMS's or NAV sensors, all available means will be used to determine the most accurate system, and that system will then be used for navigation.

- The TCAS system should be monitored as it may help detect and resolve navigation problems by observing the relative position of other traffic in the area.

- Approaching landfall, ground-based navaids will be monitored as soon as possible to verify position.

The following inflight procedures will also be followed for those flights operating in RVSM airspace:

- Verify that all primary and standby altimeters are set to 29.92 in or 1013 mb after reaching the initial cleared flight level (CFL).
• In level cruise flight, it is essential that the aircraft is flown at the CFL. This requires that ATC clearances are understood and followed by the flight crew. Except in contingency situations, the aircraft should not intentionally depart the CFL without a positive clearance from ATC.

• When climbing or descending in the NAT RVSM airspace or the Transition Areas while within ±2,000 feet of other aircraft, the vertical speed should be limited to 1,000 feet per minute. This will help preclude the issuance of TCAS resolution advisories when proper separation exists between aircraft.

• During cleared transition between flight levels, the aircraft should not be allowed to overshoot or undershoot the cleared flight level by more than 150 feet. The level off should be accomplished using the altitude capture feature of the automatic flight control system.

• In addition to reading back altitude assignments, pilots will report reaching any altitude assigned within RVSM or Conventional Vertical Separation Minimums (CVSM) altitudes within the NAT MNPS airspace.

• The automatic altitude control system (altitude hold) should be engaged during level cruise flight, except when circumstances such as the need to retrim the aircraft or turbulence requires disengagement.

• Adherence to cruise flight level should be accomplished by reference to one of the two primary altimeters. During the normal scan of cockpit instruments, a cross check between the primary altimeters should be made with their indicated readings agreeing within 200 feet. Failure to meet this condition will require that the altimetry system be reported as defective and notified to ATC.

POST-FLIGHT PROCEDURES
If a question exists as to the accuracy of any long range navigation system or sensor, an accuracy check will be completed and the results will be recorded in the aircraft maintenance log.

At the completion of the trip, all relevant paperwork to include the flight plan form, plotting chart and track message (if applicable) will be retained in the flight operations office for a period of six months.

The following post flight procedures will also be accomplished for those flights which operated in RVSM airspace.
Due to the importance of height maintenance log entries must provide personnel to effectively troubleshoot detail the actual defect and the fault. The following information should be noted when appropriate:

- Primary and standby altimeter readings.
- Altitude preselect setting.
- Subscale setting on altimeter.
- Autopilot used to control the system was selected.
- Differences in altimeter readings.
- Use of ADC selector for fault diagnosis procedure.
- Transponder and encoding source selected and any difference if alternate sources were selected.

CONTINGENCIES

The basic concepts for contingencies described in this section have been developed from the specific guidance contained in ICAO documents relative to the NAT MNPS airspace including RVSM. Contingency procedures are complicated when specific situations are detailed. However, if the details are examined in the context of certain basic concepts, then they are more easily understood.

These concepts allow for an aircraft that is unable to maintain its assigned track or altitude, and cannot obtain prior ATC clearance, to offset half the distance laterally from its assigned track (30 nm in the MNPS organized track system), and half the distance vertically between normally assigned altitudes. The pilot must determine the sequence of actions taking into account the prevailing circumstances.

Guidance for contingency procedures should not be interpreted in any way which prejudices the final authority and responsibility of the pilot in command for the safe operation of the aircraft.

At any time that lateral navigational accuracy is in doubt, perform the following checks:

- Check that the autopilot and the active navigation source...
• Check for correct coordinates

• Check course and distance displays and plotting chart.

• Check the NAV sensor page for unreliable sensors. Deselect sensors as appropriate.

If unable to resolve a position accuracy problem, it is advisable to attempt to contact other aircraft in the area to obtain wind, track or heading information, or other assistance as required.

IF UNABLE TO CONTINUE FLIGHT IN ACCORDANCE WITH ATC CLEARANCE

If unable to continue flight in accordance with ATC clearance, a revised clearance will be obtained whenever possible, prior to initiating any action, using a distress or urgency radio call as appropriate. This also applies to aircraft unable to maintain the navigational or height keeping accuracy required for MNPS, RNP and RVSM operations. If prior clearance cannot be obtained, an ATC clearance will be obtained as soon as possible. In the meantime, the flight crew will broadcast the aircraft position (including ATS Route Designator or Track Code if applicable) and intentions on the emergency VHF frequency of 121.5 at suitable intervals until an ATC clearance is received. The flight crew should make the maximum use of aircraft lights and the TCAS system while maintaining a watch for conflicting traffic.

If unable to comply with the ATC clearance or if experiencing reduced navigational or separation performance, the aircraft will leave the assigned track by turning 90 degrees to the right or left whenever possible. The direction of the turn should be determined by the position of the aircraft relative to the Organized Track System (OTS) (e.g. whether the aircraft is outside, at the edge of, or within the system), the direction of a diversion airport, and terrain if applicable. Since the OTS is constructed to have the most favorable winds near the center, the majority of traffic may likely be situated near the core of the track system.

If the aircraft is ABLE to maintain:

• Using the selectable offset function of the FMS, acquire and maintain a track laterally separated by 30 NM from the assigned track.

• Acquire and maintain a flight level that is offset by half the vertical distance between altitudes normally flown (1,000 ft offset above FL410, 500 ft offset below FL410, and 1,000 ft climb or 500 ft descent if at FL410).
CHAPTER 7

If the aircraft is UNABLE to maintain its assigned flight level:

- Initially, minimize the rate of
- Turn, while descending, to acquire and maintain a track laterally separated by 30 NM from the assigned track.
- The subsequent flight level should be one that is offset by half the vertical distance between altitudes normally flown (1,000 foot offset above FL410, 500 foot offset below FL410).

Offset tracks and/or altitudes should continue to be flown until a clearance is received from ATC.

ENROUTE DIVERSIONS ACROSS PREVAILING NAT TRAFFIC FLOW

For enroute diversions across the prevailing NAT air traffic flow and prior ATC clearance cannot be obtained, when operationally feasible, the aircraft should offset from the assigned track or route by 30 NM and expedite a descent to an altitude below FL285 or a climb to an altitude above FL410 before proceeding toward the diversion airport. The subsequent flight level should be one that is offset by half the vertical distance between altitudes normally flown. If unable or unwilling to make a major climb or descent, fly an altitude offset for the diversion until obtaining an ATC clearance.

If unable to maintain assigned flight level, the flight crew should take action as described previously in If the aircraft is UNABLE to maintain its assigned flight level, while expediting a descent to an altitude below FL285. When below FL285, proceed toward the diversion airport while continuing descent to a level which can be maintained and which is offset from those normally used by 500 feet if below FL410.

If any of the above contingencies were necessitated by the shutdown of an engine or the failure of a primary aircraft system, ATC should be notified as soon as possible, reminding ATC of the type aircraft involved and requesting expeditious handling.

EQUIPMENT FAILURES - ENCOUNTERS WITH TURBULENCE

In addition to emergency conditions which may make it impossible for an aircraft to maintain its Cleared Flight Level appropriate to RVSM airspace, if the crew is unsure of the vertical position of the aircraft due to loss or degradation of all primary altimetry systems or is unsure of the capability to
CHAPTER 7

maintain CFL due to turbulence the following procedures will be

- The flight crew should main

- Watch for conflicting traffic. maximum use of exterior lig immediate intentions of 121.

- Notify ATC of the situation include continuing in MNPS or requesting clearance to cl unable to maintain CFL.

- If unable to maintain CFL at assigned track in accordance previously.

In the event of the failure or loss: 200 feet or more difference bet check the standby altimeters and alimeter system. This system will primary height keeping. ATC will unable to confirm primary altimeter.

It is anticipated that a height monitoring system will be an element of the RVSM implementation program for the NAT airspace. When this system is deployed and operational, it is expected that these procedures will be published.

These procedures will be published.

In the event the aircraft encounter another aircraft, a lateral offset of up to two nautical miles Care should be taken when setting and course changes can lead to:

REQUIRED REPORTS

If a flight experiences navigation problems after landing. This report will be the part of the trip folder at the conclusion of the flight.

Any height keeping error while in RVSM airspace will be reported to the FAA.
within 72 hours of occurrence. This report factors, as well as measures to prev defined as:

- A Total Vertical Error (TVE) of
- An Altimetry System Error (ASE)
- An Assigned Altitude Deviation feet.

BASIC AREA NAVIGATION (BRNAV)

BRNAV airspace incorporates the RNP-5 navigation accuracy standard. The purpose of implementing BRNAV was to obtain a higher capacity in the air traffic system in congested European Airspace and to allow greater flexibility within this airspace. Unlike other special use airspace, a Letter of Authorization (LOA) is not required. However, the Aircraft Flight Manual must specify that the aircraft is certified for BRNAV operations.

BRNAV does not require any special procedures other than insuring the validity of the navigation database used in the FMS’s prior to entering BRNAV airspace. If the validity of the database can not be assured, the flight crew will notify ATC immediately. The flight crews will also tuned to allow immediate cross-check of RNAV capability. For further information, refer to the Aircraft Flight Manual.
CHAPTER 8: MAINTENANCE PROCEDURES

This section addresses those areas of maintenance that most directly relate to flight operations. Information on the conduct of maintenance department functions can be found in the Maintenance Department Manual.

DETERMINATION OF AIRWORTHINESS

In addition to a physical preflight inspection of the aircraft, flight crews will conduct a review of the aircraft maintenance logbook to determine that the aircraft is in an airworthy condition for the planned flight. The inspection status will be checked to assure the planned flight will be completed before the next required inspection comes due. The deferred maintenance log page will be reviewed as well as the MEL procedures for any inoperative items.

MAINTENANCE LOG REPORT

A new numbered maintenance log report page will be inserted into the aircraft maintenance logbook before each trip. This MLR page contains the aircraft identification, date, page number, next inspection due, VOR receiver check and current aircraft and engine total time and cycles.

Any aircraft discrepancies noted during a flight are recorded on the MLR page. In addition, a thorough verbal explanation of the discrepancy should be given to maintenance personnel to aid in troubleshooting. Items which do not meet the definition of inoperative per the MMEL will be checked as not inoperative, and those items which are inoperative will be marked as such. Any discrepancy marked as inoperative on the MLR must be either repaired or deferred in accordance with the MEL prior to further flight. An entry is required in the corrective action block adjacent to the discrepancy stating the method by which it has been cleared.

At the completion of the trip, the flight crew will insert the total flight time and cycles from that trip into the appropriate section of the MLR, and return the logbook to the maintenance department.

The yellow copy of the MLR will be retained in the logbook, along with a minimum of four of the MLR sheets from the preceding flights, for the flight crew to review.
DEFERRED MAINTENANCE LOG (DML)

A deferred maintenance log page is included in the aircraft maintenance logbook. The purpose of the DML is to provide a means of tracking and clearing those discrepancies which have been deferred by the MEL.

When an item is deferred on the maintenance log report, the maintenance department will add it to the DML page. In so doing, all deferred items on an aircraft can be reviewed on one sheet during a trip are not required to post of the maintenance department to at next trip.

When the item is repaired, the maintenance department will make the appropriate entry on the DML page.

MINIMUM EQUIPMENT LIST

Part 91 Minimum Equipment Lists are available for CORPORATE AVIATION SOLUTIONS aircraft. These allow the use of the FAA Master Minimum Equipment List in lieu of an FAA approved company document. The master MEL must be accompanied by the following documents in order to operate under its authority:

- A part 91 preamble;
- A company produced procedure manual;
- A letter of authorization from the FAA.

The part 91 preamble contains the conditions specific to non-commercial operators and their responsibilities when operating under the FAA authority to use the master MEL.

The company produced procedures manual contains the limitations for operating with inoperative equipment, as well as any operations (O) or maintenance (M) procedures which must be performed by the flight crew or maintenance technicians prior to or during flight.

When a discrepancy occurs which cannot be corrected before the next flight, the flight crew or maintenance technician will consult the MEL to determine if the aircraft may be dispatched with that item inoperative. If so, then the item will be logged as inoperative in the discrepancy section of the maintenance log report.

The flight crewmember, or maintenance technician if required, will make an entry in the corrective action column stating that the item has been deferred in accordance with the MEL, referencing the specific section. The entry will then be
CHAPTER 9

dated and signed, and an inoperative placarding section of the MEL proce

The flight crew is responsible for see procedures manual are followed. (M or training must be performed by qua qualified personnel, including the flig requiring specialized tools or training

ENGINE CRUISE PARAMETERS

Engine cruise parameters are to be re engines should be allowed to stabiliz the readings are taken. The engine s off during recording. A log sheet is | the maintenance logbook.

MAINTENANCE AWAY FROM H

Should it be necessary to have maint AVIATION SOLUTIONS aircraft aw made to coordinate this with the COI maintenance department.

If it proves impractical to coordinate SOLUTIONS maintenance departme flight crew to assure that any maint Any parts used in the repair of the air to include a packing slip showing the FAA form 8130 should be provided.

The flight crew will assure that the p maintenance makes an appropriate er the work performed.

REFUELING PROCEDURES

Refueling operations at home base w AVIATION SOLUTIONS maintenai are taking place away from home bas these operations.
CHAPTER 9

INTENTIONALLY LEFT BLANK
CHAPTER 9

CHAPTER 9: TRAINING

Aviation Department training will be conducted in accordance with an annual training plan prepared by each manager (Director of Aviation, Chief of Maintenance) or their appointed representatives. This plan should be prepared by November 1 of each year, and will cover the following calendar year.

All required training will be listed in the plan by course name and vendor. Specific individuals will be listed to accomplish their training along with a scheduled date.

PILOT TRAINING

Pilots will attend FAA approved simulator based recurrent training semiannually. In the case of pilots assigned PIC duties, an appropriate proficiency check as required by FAR part 61 will be accomplished during this training. When a pilot is assigned duties in more than one aircraft type, he will alternate recurrent training between those types.

Initial pilot training will be completed as necessary by new hire pilots, and by pilots who will be assigned to operate new aircraft types which may be acquired by CORPORATE AVIATION SOLUTIONS.

Each initial and recurrent training session will include lower than standard takeoff procedures. At least two takeoffs will be performed with an RVR of 1,600 feet, one ending with an RTO and one being completed with an engine failure occurring at V1.

International procedures training, including specific training in RVSM, MNPS and RNP airspace operations, will be accomplished by pilots a minimum of every four years. This may be scheduled to run concurrently with aircraft recurrent training.

MAINTENANCE TECHNICIAN TRAINING

Newly hired maintenance technicians will normally be scheduled to receive initial training within 24 months of their date of hire, as necessary, on aircraft they are assigned to maintain. If a new aircraft type is obtained, initial maintenance training will normally be completed by all technicians within 24 months of the aircraft being placed in service.

Maintenance technicians assigned to work on CORPORATE AVIATION SOLUTIONS aircraft will receive manufacturer approved training (initial or recurrent) annually on either an aircraft or system which they are assigned to maintain.
CHAPTER 9

GENERAL TRAINING

Other training may be accomplished as deemed appropriate by the Manager’s to assure that the professional industry standards.

Complete records of all required and optional individual’s personnel or training files. To be kept in the individual’s personnel or training files. To be kept in the

CORPORATE AVIATION SOLUTIONS
CHAPTER 10: HAZARDOUS MATERIALS

It is important for aviation personnel to be able to recognize hazardous or dangerous materials which are regulated under US CFR 49, parts 170 through 180, so that they are not inadvertently placed onboard company aircraft.

Hazardous materials include explosives, compressed gasses, flammable liquids and solids, oxidizers, poisons, corrosives and radioactive materials. Some examples are paint, lighter fluid, fireworks, tear gasses, oxygen bottles. Any box or container which has shipping labels attached should be carefully inspected to determine its contents. If any doubt exists, they should not be carried on board the aircraft.

Federal regulations exempt specific items from the requirements dealing with the carriage of hazardous materials. Following is a partial list of those items:

- Aviation fuel and oil in approved aircraft tanks;
- Aircraft equipment such as fire extinguishers, first aid kits, signaling devices, batteries and aerosol dispensers;
- Survival kit pyrotechnic signaling devices, inflatable life rafts and vests;
- Non-radioactive medicinal and toilet articles, including aerosols, when the total capacity carried by each passenger or crewmember does not exceed 70 ounces or 2 liters. The capacity of each container other than an aerosol container cannot exceed 16 ounces or 1.1 pounds;
- Small arms ammunition for personal use carried by a passenger or crewmember in his baggage (excluding carry-on baggage) if securely packed in fiber, wood or metal boxes, or other packaging specifically designed to carry small amounts of ammunition;
- Personal smoking materials intended for use by an individual when carried on his person except lighters with flammable liquid reservoirs and containers containing lighter fluid for use in refilling lighters;
- Dry ice in quantities not exceeding 2.3 kg (5.07 pounds) per package packed as prescribed by paragraph 173.217 of 49 CFR, and used as a refrigerant for the contents of the package.

A complete listing of exempted items may be found in 49 CFR, 175.10.
CHAPTER 11

CHAPTER 11 SAFETY MANAGEMENT

SAFETY POLICY

Safety is a core business value, and a fundamental component of our competitive advantage. Our organization is strengthened by making continuous safety improvements and excellence an integral part of all operations.

All managers and employees are responsible and accountable for their actions and safety performance, starting with myself as CEO and the Aviation Manager. I endorse all personnel to think and work safely at all times, regardless of any real or perceived pressures to do otherwise.

To prevent accidents and to eliminate damage or injury, we have implemented and maintain an active safety management system (SMS). Our objective is the proactive management of identifiable hazards, the reduction of risk to a level as low as reasonably practicable, and the sharing of safety information with our stakeholders.

NON-PUNITIVE SAFETY REPORTING POLICY

Our organization fully supports and encourages a culture of openness and trust between all personnel. This cannot be achieved unless employees feel able to report occurrences or hazards without the fear of unwarranted retribution. Reporting occurrences or hazards should become a priority for all employees.

Only with full awareness can management rectify deficiencies in a timely manner. Employees are encouraged to identify and report unsafe conditions without fear of retribution. The organization’s primary goal is the identification of any unsafe condition that exists within, or may affect, the organization.

Personnel reporting safety-related issues will not be subject to punitive discipline, regardless of whether they were personally involved in the observation giving rise to the safety concern.

The only cases where disciplinary action will be taken are for:

• negligence;
• willful or intentional disregard;
• criminal intent; and
• use of illicit substances.
ROLES AND RESPONSIBILITIES

We ensure that all SMS roles and responsibilities are identified, communicated, documented and periodically evaluated to ensure they are appropriate and functioning within all levels of the organization.

In addition to safety responsibilities associated with our day-to-day operations, the Aviation Manager, safety manager and employees have additional responsibilities associated with the operation and maintenance of our SMS.

The Aviation Manager is responsible for:

- establishing and implementing the SMS;
- ensuring the required safety resources are available;
- establishing and adhering to the corporate safety policy;
- promoting and supporting the SMS;
- ensuring that the SMS remains effective.

The SMS manager is responsible for:

- managing the operation of the SMS;
- collecting and analyzing safety information;
- monitoring and evaluating the results of corrective actions;
- ensuring that risk assessments are conducted when applicable;
- determining the adequacy of training;
- authority to delegate specific SMS tasks/roles to persons within the organization;
- ensuring that periodic reviews are conducted to determine the effectiveness of the system;
- monitoring the industry for safety concerns that could affect the program;
- ensuring safety-related information, including organization goals and objectives, are made available to all personnel through established communication processes.

Employees are responsible for:

Developed by Corporate Aviation Solutions, LLC
Reproduction Not Authorized
• following established safe working practices;

• immediately dealing with any unsafe conditions;

• identifying and reporting all occurrences of unsafe conditions or practices in a timely manner; and

• being familiar with the organization's SMS.

HAZARD IDENTIFICATION AND TRACKING

The purpose of a hazard identification program is to proactively identify and address potential deficiencies in safety management. All Flight Department employees are expected to participate in the hazard identification program. Reports/observations can be made to the Director of Operations/Chief Pilot verbally, but written reports are encouraged.

Written reports should be completed on the "Hazard Identification and Tracking Form" in this section.

The Director of Operations/Chief Pilot or person to whom he/she delegates the task will review all hazard reports and a response will be provided to the person making the report.

If it is determined that a modification to a procedure or process is required, such information will be entered on the Hazard Identification and Tracking Form and tracked until the remedial action has been completed.

Written reports will be filed and reviewed on an annual basis to determine the effectiveness of the remedial measures.
Hazard Identification Form

Date:______________ Time:________________ Location:_______________

Name:___

Describe the Event or Situation You Observed:___

Reviewer Comments and Proposed Remedial Action:

Name:___

Accepted [] Rejected[] If rejected action.

Director of Operations/Chief Pilot:_________________

Date:_____________

Remedial Action Completed on:_____________________

Developed by Corporate Aviation Solutions, LLC
Reproduction Not Authorized